
RAG (Retrieval Augmented Generation)

The RAG architecture, with vector retrieval at its core, has become the leading technological

framework for addressing two major challenges of large models: acquiring the latest external

knowledge and mitigating issues of generating hallucinations. This architecture has been

widely implemented in numerous practical application scenarios.

Developers can utilize this technology to cost-effectively build AI-powered customer service

bots, corporate knowledge bases, AI search engines, etc. These systems interact with

various forms of organized knowledge through natural language input. A representative

example of a RAG application is as follows:

In the diagram below, when a user asks, "Who is the President of the United States?", the

system doesn't directly relay the question to the large model for an answer. Instead, it first

conducts a vector search in a knowledge base (like Wikipedia, as shown in the diagram) for

the user's query. It finds relevant content through semantic similarity matching (for instance,

"Biden is the current 46th President of the United States…"), and then provides the user's

question along with the found knowledge to the large model. This enables the model to have

sufficient and complete knowledge to answer the question, thereby yielding a more reliable

response.

The concept of the RAG

https://docs.dify.ai/
https://github.com/langgenius/dify


We can liken a large model to a super-expert, knowledgeable in various human domains.

However, this expert has its limitations; for example, it doesn't know your personal situation,

as such information is private and not publicly available on the internet, and therefore, it

hasn't had the opportunity to learn it beforehand.

When you want to hire this super-expert as your family financial advisor, you need to allow

them to review your investment records, household expenses, and other relevant data before

they can respond to your inquiries. This enables them to provide professional advice tailored

to your personal circumstances.

This is what the RAG system does: it helps the large model temporarily acquire external

knowledge it doesn't possess, allowing it to search for answers before responding to a

question.

Based on this example, it's evident that the most critical aspect of the RAG system is the

retrieval of external knowledge. The expert's ability to provide professional financial advice

depends on accurately finding the necessary information. If the expert retrieves information

unrelated to financial investments, like a family weight loss plan, even the most capable

expert would be ineffective.

Previous

Export/Import

Next

Hybrid Search

Last updated 6 months ago

Basic Architecture of RAG

Why is this necessary?

Dify English Github

https://docs.dify.ai/features/workflow/export-import
https://docs.dify.ai/features/retrieval-augment/hybrid-search
https://docs.dify.ai/
https://github.com/langgenius/dify


Hybrid Search

The mainstream method in the RAG retrieval phase is Vector Search, which is based on

semantic relevance matching. The technical principle involves initially dividing documents

from external knowledge bases into semantically complete paragraphs or sentences, and

then converting them through a process known as embedding into a series of numerical

expressions (multidimensional vectors) that computers can understand. The user's query

undergoes a similar conversion.

Computers can detect subtle semantic correlations between user queries and sentences. For

example, the semantic relevance between "a cat chases a mouse" and "a kitten hunting a

mouse" is higher than between "a cat chases a mouse" and "I like to eat ham." After

identifying the text with the highest relevance, the RAG system provides it as context

alongside the user's query to the large model, aiding in answering the question.

Besides complex semantic text searches, Vector Search has other advantages:

However, Vector Search might underperform in certain scenarios, like:

These limitations are precisely where traditional keyword search excels, being adept at:

Understanding of similar semantics (e.g., mouse/mousetrap/cheese, Google/Bing/search

engine)

Multilingual comprehension (e.g., matching Chinese input with English content)

Multimodal understanding (supports matching text, images, audio, and video)

Fault tolerance (handles spelling mistakes, vague descriptions)

Searching names of people or objects (e.g., Elon Musk, iPhone 15�

Searching acronyms or short phrases (e.g., RAG, RLHF�

Searching IDs (e.g., gpt-3.5-turbo , titan-xlarge-v1.01 )

Precise matching (e.g., product names, personal names, product numbers)

Matching a small number of characters (vector search performs poorly with few

characters, but users often input just a few keywords)

Why is Hybrid Search Necessary?



In most text search scenarios, it's crucial to ensure that the most relevant results appear in

the candidates. Vector and keyword searches each have their strengths in the search

domain. Hybrid Search combines the advantages of both techniques while compensating for

their respective shortcomings.

In Hybrid Search, vector and keyword indices are pre-established in the database. Upon user

query input, the system searches for the most relevant text in documents using both search

methods.

"Hybrid Search" doesn't have a definitive definition; this article exemplifies it as a

combination of Vector Search and Keyword Search. However, the term can also apply to

other combinations of search algorithms. For instance, we could combine knowledge graph

technology, used for retrieving entity relationships, with Vector Search.

Different search systems each excel at uncovering various subtle connections within texts

(paragraphs, sentences, words), including precise relationships, semantic relationships,

thematic relationships, structural relationships, entity relationships, temporal relationships,

and event relationships. It's safe to say that no single search mode is suitable for all

scenarios. Hybrid Search, by integrating multiple search systems, achieves a

complementarity among various search technologies.

Definition: Vector Search involves generating query embeddings and then searching for text

chunks that most closely match these embeddings in terms of vector representation.

Matching low-frequency vocabulary (which often carries more significant meanings, like in

“Do you want to go for a coffee with me?”, words like “drink” and “coffee” carry more

weight than “you”, “want”, “me”)

Hybrid Search

Vector Search



TopK� This setting is used to filter text chunks that have the highest similarity to the user's

query. The system also dynamically adjusts the number of chunks based on the context

window size of the selected model. The default value for this setting is 3.

Score Threshold: This setting is used to establish a similarity threshold for the selection of

text chunks. It means that only text chunks exceeding the set score are recalled. By default,

this setting is turned off, meaning that the system does not filter the similarity values of the

recalled text chunks. When activated, the default value is set to 0.5.

Rerank Model: After configuring the Rerank model's API key on the "Model Provider" page,

you can enable the "Rerank Model" in the search settings. The system then performs a

semantic re-ranking of the document results that have been recalled after semantic search,

optimizing the order of these results. Once the Rerank model is set up, the TopK and Score

threshold settings are only effective in the Rerank step.

Definition: Full-Text Search involves indexing all the words in a document, enabling users to

query any term and retrieve text chunks that contain these terms.

Settings for Vector Search

Full-Text Search



TopK� This setting is utilized to select text chunks that most closely match the user's query in

terms of similarity. The system also dynamically adjusts the number of chunks based on the

context window size of the chosen model. The default value for TopK is set at 3.

Rerank Model: After configuring the API key for the Rerank model on the "Model Provider"

page, you can activate the "Rerank Model" in the search settings. The system will then

perform a semantic re-ranking of the document results retrieved through full-text search,

optimizing the order of these results. Once the Rerank model is configured, the TopK and any

Score threshold settings will only be effective during the Rerank step.

Hybrid Search operates by concurrently executing Full-Text Search and Vector Search. It then

applies a re-ranking step to choose the best results that match the user's query from both

types of search results. To effectively use this feature, it is necessary to configure the Rerank

Model API.

Settings for Full-Text Search

Hybrid Search



TopK� This setting is used for filtering text chunks that have the highest similarity to the

user's query. The system will dynamically adjust the number of chunks based on the context

window size of the model in use. The default value for TopK is set at 3.

Rerank Model: After configuring the Rerank model's API key on the "Model Supplier" page,

you can enable the "Rerank Model" in the search settings. The system will perform a

semantic re-ranking of the document results retrieved through hybrid search, thereby

optimizing the order of these results. Once the Rerank model is set up, the TopK and any

Score threshold settings are only applicable during the Rerank step.

To set the search mode when creating a knowledge base, navigate to the "Knowledge �

Create Knowledge" page. There, you can configure different search modes in the retrieval

settings section.

Settings for Hybrid Search

Setting the Search Mode When Creating a
Knowledge



You can modify the search mode during application creation by navigating to the "Prompt

Engineering � Context � Select Knowledge � Settings" page. This allows for adjustments to

different search modes within the prompt arrangement phase.

Setting the Search Mode When Creating a Knowledge base

Modifying the Search Mode in Prompt
Engineering

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify


Previous

RAG �Retrieval Augmented Generation)

Next

Rerank

Last updated 6 months ago

Modifying the Search Mode in Prompt Engineering

https://docs.dify.ai/features/retrieval-augment
https://docs.dify.ai/features/retrieval-augment/rerank


Rerank

Hybrid Search combines the advantages of various search technologies to achieve better

recall results. However, results from different search modes need to be merged and

normalized (converting data into a uniform standard range or distribution for better

comparison, analysis, and processing) before being collectively provided to the large model.

This necessitates the introduction of a scoring system: Rerank Model.

The Rerank Model works by reordering the list of candidate documents based on their

semantic match with the user's question, thus improving the results of semantic sorting. It

does this by calculating a relevance score between the user's question and each candidate

document, returning a list of documents sorted by relevance from high to low. Common

Rerank models include Cohere rerank, bge-reranker, and others.

In most cases, there is an initial search before rerank because calculating the relevance score

between a query and millions of documents is highly inefficient. Therefore, rerank is typically

placed at the end of the search process, making it very suitable for merging and sorting

results from different search systems.

However, rerank is not only applicable to merging results from different search systems. Even

in a single search mode, introducing a rerank step can effectively improve the recall of

documents, such as adding semantic rerank after keyword search.

In practice, apart from normalizing results from multiple queries, we usually limit the number

of text chunks passed to the large model before providing the relevant text chunks (i.e.,

TopK, which can be set in the rerank model parameters). This is done because the input

Hybrid Search � Rerank

Why is Rerank Necessary?



window of the large model has size limitations (generally 4K, 8K, 16K, 128K Token counts),

and you need to select an appropriate segmentation strategy and TopK value based on the

size limitation of the chosen model's input window.

It should be noted that even if the model's context window is sufficiently large, too many

recalled chunks may introduce content with lower relevance, thus degrading the quality of

the answer. Therefore, the TopK parameter for rerank is not necessarily better when larger.

Rerank is not a substitute for search technology but an auxiliary tool to enhance existing

search systems. Its greatest advantage is that it not only offers a simple and low-

complexity method to improve search results but also allows users to integrate semantic

relevance into existing search systems without the need for significant infrastructure

modifications.

Visit https://cohere.com/rerank, register on the page, and apply for usage rights for the

Rerank model to obtain the API key.

Access the Rerank settings by navigating to “Knowledge � Create Knowledge � Retrieval

Settings”. Besides setting Rerank during knowledge creation, you can also modify the Rerank

configuration in the settings of an already created knowledge base, and change the Rerank

configuration in the knowledge recall mode settings of application arrangement.

How to Obtain the Cohere Rerank Model?

Setting the Rerank Model in Knowledge Search
Mode

https://cohere.com/rerank


TopK� Used to set the number of relevant documents returned after Rerank.

Score Threshold: Used to set the minimum score for relevant documents to be returned after

Rerank. After setting the Rerank model, the TopK and Score threshold settings are only

effective in the Rerank step.

Recall Mode Enable the Rerank model by setting it to Multi-path retrieval mode in the “Prompt

Engineering � Context � Settings” page.

Explanation of Multi-path retrieval Mode: 🔗

Setting the Rerank Model in Knowledge Search Mode

Setting the Rerank Model in Multi-path retrieval

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify


Previous

Hybrid Search

Next

Retrieval

Last updated 6 months ago

Setting the Rerank Model in Multi-path retrieval

https://docs.dify.ai/features/retrieval-augment/hybrid-search
https://docs.dify.ai/features/retrieval-augment/retrieval


Retrieval
When users build knowledge base Q&A AI applications, if multiple knowledge bases are

associated within the application, Dify supports two retrieval modes: N-to-1 retrieval and

Multi-path retrieval.

Based on user intent and knowledge description, the Agent independently determines and

selects the most matching single knowledge base for querying relevant text. This mode is

suitable for applications with distinct knowledge and a smaller number of knowledge bases.

N-to-1 retrieval relies on the model's inference capability to choose the most relevant

knowledge base based on user intent. When inferring the knowledge, the knowledge serves

as a tool for the Agent, chosen through intent inference; the tool description is essentially the

knowledge description.

Retrieval Settings

Retrieval Settings

N-to-1 Retrieval



When users upload knowledge, the system automatically creates a summary description of

each knowledge base. To achieve the best retrieval results in this mode, you can view the

system-generated summary description under “Knowledge � Settings � Knowledge

Description” and check if this content clearly summarizes the knowledge's content.

Here is the technical flowchart for N-to-1 retrieval:

Therefore, this mode's recall effectiveness can be impacted when there are too many

knowledge bases or when the knowledge descriptions lack sufficient distinction. This mode

is more suitable for applications with fewer knowledge bases.

Tip: OpenAI Function Call already supports multiple tool calls, and Dify plans to upgrade this

mode to "N-to-M retrieval" in future versions.

Based on user intent, this mode matches all knowledge bases simultaneously, queries

relevant text chunks from multiple knowledge bases, and after a re-ranking step, selects the

best results matching the user's question from the multi-path query results. Configuring the

Rerank model API is required. In Multi-path retrieval mode, the search engine retrieves text

content related to the user's query from all knowledge bases associated with the application,

merges the results from multi-path recall, and re-ranks the retrieved documents semantically

using the Rerank model.

In Multi-path retrieval mode, configuring the Rerank model is necessary. How to configure the

Rerank model: 🔗

Here is the technical flowchart for Multi-path retrieval:

N-to-1 Retrieval

Multi-path Retrieval

Dify English Github

https://docs.dify.ai/
https://github.com/langgenius/dify


As Multi-path retrieval does not rely on the model's inferencing capability or knowledge

descriptions, this mode can achieve higher quality recall results in multi-knowledge searches.

Additionally, incorporating the Rerank step can effectively improve document recall.

Therefore, when creating a knowledge base Q&A application associated with multiple

knowledge bases, we recommend configuring the retrieval mode as Multi-path retrieval.

Previous

Rerank

Next

Knowledge Import

Last updated 6 months ago

Multi-path retrieval

https://docs.dify.ai/features/retrieval-augment/rerank
https://docs.dify.ai/features/datasets

